|
Antimicrobial copper-alloy touch surfaces can prevent frequently touched surfaces from serving as reservoirs for the spread of pathogenic microbes. This is especially true in healthcare facilities, where harmful viruses, bacteria, and fungi colonize and persist on doorknobs, push plates, railings, tray tables, tap (faucet) handles, IV poles, HVAC systems, and other equipment. These microbes can often survive on surfaces for surprisingly long periods of time (sometimes more than 30 days). The surfaces of copper and its alloys, such as brass and bronze, are antimicrobial. They have an inherent ability to kill a wide range of harmful microbes relatively rapidly – often within two hours or less – and with a high degree of efficiency. These antimicrobial properties have been demonstrated by an extensive body of research. The research also suggests that if touch surfaces are made with copper alloys, the reduced transmission of disease-causing organisms can reduce patient infections in hospital intensive care units (ICU) by as much as 58%.〔Cassandra D. Salgado, Kent A. Sepkowitz, Joseph F. John, J. Robert Cantey, Hubert H. Attaway, Katherine D. Freeman, Peter A. Sharpe, Harold T. Michels, Michael G. Schmidt (2013); Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit; ''Infection Control and Hospital Epidemiology,'' May 2013〕〔Copper Surfaces Reduce the Rate of Health Care-Acquired Infections in the ICU, April 9, 2013; Science News, http://www.sciencedaily.com/releases/2013/04/130409110014.htm〕 ==Antimicrobial properties== (詳細はmicroorganisms. In the interest of protecting public health, especially in healthcare environments with their susceptible patient populations, an abundance of peer-reviewed antimicrobial efficiency studies have been and continue to be conducted around the world regarding copper's efficiency to destroy ''E. coli'' O157:H7, methicillin-resistant ''Staphylococcus aureus'' (MRSA), ''Staphylococcus'', ''Clostridium difficile'', influenza A virus, adenovirus, and fungi.〔(Copper Touch Surfaces )〕 Much of this antimicrobial efficiency work has been or is currently being conducted at the University of Southampton and Northumbria University (United Kingdom), University of Stellenbosch (South Africa), Panjab University (India), University of Chile (Chile), Kitasato University (Japan), the Instituto do Mar and University of Coimbra (Portugal), and the University of Nebraska and Arizona State University (US) In the US, to qualify copper and its alloys as registered antimicrobial substances under that nation's federal pesticide regulations, an extensive additional body of efficiency testing under Good Laboratory Practice guidelines by an EPA-approved laboratory was required by the USEPA. After these tests were concluded in 2008, registrations of 282 different copper alloys were granted. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Antimicrobial copper-alloy touch surfaces」の詳細全文を読む スポンサード リンク
|